
STOP/DJVU - Unpacking

Summary

In this post, I will walk through the unpacking process of a stop/djvu sample with the sample hash

below:

SHA256 f02b45b579b65a1ea89f2d9443f2c1a1484dec0bc66591ff4d3ad6ce63d635aa

I got this sample from Malware Bazaar:

https://bazaar.abuse.ch/sample

/f02b45b579b65a1ea89f2d9443f2c1a1484dec0bc66591ff4d3ad6ce63d635aa/

We will do:

• Static Analysis with Ghidra

• Dynamic Analysis with x32dbg, accompanied by static analysis in Cutter

• Dumping the payload with pe-sieve

This writeup was originally called "Teambot Unpacking", as Twitter user @gabbbarrr pointed out, this

is, despite it's label, STOP/DJVU ransomware.

Static Analysis

After a quick look with DetectItEasy to check the entropy, it's easy to see this sample is packed:

https://bazaar.abuse.ch/sample/f02b45b579b65a1ea89f2d9443f2c1a1484dec0bc66591ff4d3ad6ce63d635aa/
https://bazaar.abuse.ch/sample/f02b45b579b65a1ea89f2d9443f2c1a1484dec0bc66591ff4d3ad6ce63d635aa/
https://bazaar.abuse.ch/sample/f02b45b579b65a1ea89f2d9443f2c1a1484dec0bc66591ff4d3ad6ce63d635aa/
https://bazaar.abuse.ch/sample/f02b45b579b65a1ea89f2d9443f2c1a1484dec0bc66591ff4d3ad6ce63d635aa/

So, I loaded the sample into Ghidra for a closer examination. Starting from the entry function, it

isn't very difficult to find main. After calls to __setargv and __setenvp , a call to __wincmdln is

made. Immediately after this, the main function is called. This function is was not labled as main, so I

renamed it as you can see in the image below:

The main function contains various API calls. However, these seem to be noise. Except for the two

functions before the return at the end, I found nothing significant here.

The first function, relabled by me to mw_load_msimg32() loads msimg32.dll via LoadLibraryA:

The second function, labled as FUN_403906 , is where the unpacking takes place.

After some initialization, LocalAlloc is retrieved from msimg32.dll via GetProcAddress. The

resulting function address of LocalAlloc is stored in _addr_localalloc. With this, some memory is

allocated, pointed to by addr. I labled the next function mw_virtualprotect . This function changes

the permissions of the allocated memory region to execute, read, write:

Continuing to analyze FUN_403906 reveals the function which unpacks the malware, thus, I

renamed this to mw_unpack :

In this function, the unpacking routine is applied. It begins with a large number of hard-coded 32-bit

constants and ends with a loop containing the unpacking logic. The unpacked code is stored in the

previously allocated memory.

I didn't dig through the unpacking algorithm itself very much.

Eventually, before the return of FUN_403906 , the unpacked code is executed in exec_unpacked .

The exec_unpacked was again labled as such by me:

What I pieced together above can be confirmed by debugging in x32dbg:

LocalAlloc - allocates memory at address 0xb50020

Virtual Protect - applied to the memory area 0xb50020, set permissions to ERW

After unpacking, a jump to the unpacked payload occurs.

That's as far as I went with the static analysis, next, let's fire up x32dbg and get that payload out.

Dynamic Analysis

I will restart the debugging process here, the debugging in the "Static Analysis" section was only to

link the static analysis findings with the actual execution flow of the program.

After I restarted the debugging process, I set a breakpoint at VirtualProtect . That way, I can get

the address of the allocated memory and break before the unpacked code is executed.

As you can see from the stack, the permissions are set to execute, read, write (0x40) and the

allocated memory's address is the topmost argument.

I set a hardware breakpoint at the memory address in the dump.

If you hit continue now, you will land in the routine before the part that executes the unpacked code:

We're looking for the call at 0x404139 , this calls the unpacked code, remember FUN_403906 from

the static analysis section, this is the routine we are in, so we can find 0x404139 by scrolling down. I

set a breakpoint here and removed the hardware breakpoint. After that, I hit continue and ended up

at the call at 0x404139.

After stepping into this call, we want to follow the execution from jmp eax .

After following this, I landed in the allocated memory, where the unpacked code resides.

From here, there are two possible ways to continue.

1. Step through the code until we find something interesting

2. dump the memory of the shellcode and check it out in a disassembler.

I prefer Option 1.

Examine the Shellcode - 1

Dumping the memory region where the shellcode is stored and loading the dump into Cutter reveals

several interesting routines. First this routine, which looks complicated judging by it's graph

overview:

From my examination, it seems this performs further unpacking. This is confirmed later.

Also, there is a function containing stack strings:

Continuing in the debugger, I put a breakpoint at VirtualAlloc and hit continue. Indeed, VirtualAlloc is

called and some memory is allocated. I put a hardware breakpoint there and kept on stepping.

Once the hardware breakpoint was hit, I found myself in the unpacking routine shown in the graph

overview above. I set a breakpoint at the return of this routine and watched the allocated memory

being populated. Once the memory area was filled, I dumped that memory as well. As with the dump

before, I loaded it into Cutter to examine it the code in detail.

Examine the Shellcode - 2

Looking at the strings of this dump shows that it contains the DOS header and DLL names among

other interesting things.

Looking through the functions in Cutter, one of them stands out. It contains stack strings of various

APIs, among them, in this order:

• CreateProcessA

• GetThreadContext

• VirtualAlloc

• VirtualAllocEx

• VirtualFree

• ReadProcessMemory

• WriteProcessMemory

• SetThreadContext

• ResumeThread

This looks very much like Process Hollowing, which prompted me to set a breakpoint at

ResumeThread.

I continued execution, hitting the breakpoint at ResumeThread , after which I opened Process

Hacker:

The PID 5384, child of the original executable, is what was created by CreateProcessA. After the

processes memory was written it should contain the stop/djvu payload. As ResumeThread is the last

call for the Process Hollowing dumping PID 5384 with pe-sieve yields the unpacked stop/djvu

malware.

I loaded the dumped executable into DetectItEasy, the entropy looks better:

... and there are several interesting imports:

Now on to analyzing the unpacked sample ^o^ - updates to follow ;-)

0xca7

