
PQ Tutorial

Resources:

• https://blog.trailofbits.com/2018/10/22/a-guide-to-post-quantum-cryptography/

• https://cims.nyu.edu/~regev/papers/qcrypto.pdf

Basis for PQ

Systems of linear equations, solvable using linear algebra, like Gauss Elimination.

Reformulated with Vectors:

When given an , we see the result of without knowing .

Now we introduce and error and a prime modulus q to generate a noisy function:

Because of the error term learning the mystery function is extremely difficult - this is

called the Ring Learning With Errors Problem (LWE)

Taken from resource:

The reason cryptography based on LWE gets called lattice-based cryptography is

because the proof that LWE is hard relies on the fact that finding the shortest vector in

something called a lattice is known to be NP-Hard. We won’t go into the mathematics of

lattices in much depth here, but one can think of lattices as a tiling of n-dimensional

space

Cryptosystem from LWE

a0,0x0 + a0,1x1 + a0,nxn = y0 = f 0
→x0

(→a0)

a1,0x0 + a1,1x1 + a1,nxn = y1 = f 1
→x1

(→a1)

…

an,0x0 + an,1x1 + an,nxn = yn = f n
→xn

(→an)

→a = a0, a1, … , an

→x = x0, x1, … , xn

f→x(→a) = a0x0 + ⋯ + anxn

→a ax →x

f→x(→a) = a0x0 + ⋯ + anxn + ϵ mod q

ϵ

https://blog.trailofbits.com/2018/10/22/a-guide-to-post-quantum-cryptography/
https://blog.trailofbits.com/2018/10/22/a-guide-to-post-quantum-cryptography/
https://cims.nyu.edu/~regev/papers/qcrypto.pdf
https://cims.nyu.edu/~regev/papers/qcrypto.pdf

Public Key is a matrix of vectors from the linear system above:

The secret key is a -dimensional vector

When ok is multiplied by the result is the error term, which is about .

Encryption and Decryption

Encrypting a bit of information goes as follows:

1. take the sum of random columns of (Matrix A)

2. encode in the last coordinate of the result by:

• adding 0 of m is 0

• q/2 if m is 1

This is the same as picking a random vector x of 0s or 1s and compute:

where

NOTE: A has dimensions, as the y-values are contained in it. That means the zero

vector must be of dimension , including the dimension becomes .

Example Calculation

→a

pk =

⎡
⎢⎢⎢⎢
⎣

a00 a01 … a0n y0

a10 a11 … a1n y1

…

an0 an1 … ann yn

⎤
⎥⎥⎥⎥
⎦

n

sk = (s0, s1, … , sn)

(−
→sk, 1) 0

m

pk

m

A→x + (→0, μ) = →c

μ = m⌊ ⌉q

2

n + 1
→0 n μ n + 1

A =

⎡
⎢⎢⎢⎢
⎣

1 0 1 y0

0 1 1 y1

0 0 1 y2

1 1 1 y3

⎤
⎥⎥⎥⎥
⎦

→x = (1, 0, 1, 0)

5

[2 1 1 7]

To get the original message back, one computes:

where:

The recipient can now test if the output is closer to zero or the q/2 mod q and decode the

bit.

4

m = 0: 1

In [7]: import numpy as np

q = 11

y0 = 0

y1 = 0

y2 = 0

y3 = 0

pk = 0

pk = np.array([
[1, 0, 1, 0],

[0, 1, 1, 0],

[0, 0, 1, 0],

[1, 1, 1, 0]

])

x = np.array([1, 0, 1, 0])

r0 = pk.dot(x)

In [8]: m = 1

mu = m * q//2
print(mu)

In [9]: c = r0 + np.array([0,0,0, mu])

print(c)

m

→c ⋅ (−
→sk, 1) ≈ A ⋅ x ⋅ (−

→sk, 1) + m⌊ ⌉ ≈ m⌊ ⌉q

2

q

2

(−
→sk, 1) ≈ ϵ ≈ 0

In [20]: sk = np.array([1,0,1])

sk = -sk
sk = np.append(sk, 1)

r1 = c.dot(sk)
print(r1)

In [21]: out = q // 2

if abs(out - r1) < m:

print("m = 1: {}".format(m))
else:

print("m = 0: {}".format(m))

The result is 1, as expected.

Kyber - rC3 2021

Source: https://www.youtube.com/watch?v=FUb75AUXMvw

Below are my notes / transcript, all credit to above.

Polynomials

Polynomials can be multiplied and added. They can be reduced by modulo operations.

The polynomials itself is reduced by another polynomial, the coefficients by modulo with

a scalar.

Multiplication / Addition

Modulo

We can use polynomials in matrices and vectors.

Kyber

e makes the problem hard, A is the public key s is the secret, e is the error, the

result is t .

The public keypair is and the private key is .

(x2 + x − 7)(x − 1) = x3
− 8x + 7

x17 + 3x6 + 14x mod (x4 + 1)

[x + 1 3x2
− 4

x2
− 2 2x2

− 2x
] ⋅ [3x2 + 2x

−x − 4
] + (−6x − 10, 12x2 + 3) = (−7x5 + 6, 4x)

As + e = [x + 1 3x2
− 4

x2
− 2 2x2

− 2x
] ⋅ [3x2 + 2x

−x − 4
] + (−6x − 10, 12x2 + 3) = (−7x5 +

As + e = t

(A, t) s

https://www.youtube.com/watch?v=FUb75AUXMvw
https://www.youtube.com/watch?v=FUb75AUXMvw

Kyber - Encryption

1. transform the letter we want to send to binary

m = 'c' (the letter 'c') =

1. turn this into a polynomial

m =

(plaintext)

1. plaintext polynomial is scaled by a factor -> same polynomial, with larger coefficients

1. add error terms (error terms are more complicated than constants)

 is a polynomial and is a vector of polynomials.

is the ciphertext.

Kyber - Decryption

1. remove the public key

with:

this becomes:

(the term gets cancelled out)

10000112

1 ⋅ x6 + 0 ⋅ x5 + 0 ⋅ x4 + 0 ⋅ x3 + ⋅x2 + 1 ⋅ x1 + 1 ⋅ x0 = x6 + x + 1

ms = 1337 ⋅ m = 1337 ⋅ x6 + 1337 ⋅ x + 1337

e0, e1, e2

v = t ⋅ e0 + e1 + ms

u = A ⋅ e0 + e2

v u

c = (v, u)

d = v − su = (t ⋅ e0 + e1 + ms) − s ⋅ (A ⋅ e0 + e2)

d = te0 + e1 + ms − Ase0 + se2

As + e = t

d = (A ⋅ s + e) ⋅ e0 + e1 + ms − Ase0 − se2

d = A ⋅ s ⋅ e0 + e ⋅ e0 + e1 + ms − Ase0 − se2

A ⋅ s ⋅ e0

d = e ⋅ e0 + e1 + ms − se2

The error terms are all very small (polynomials with small coefficients) this applies to the

secret key as well.

The plaintext on the other hand is large, as we scaled it.

Noise / Errors are removed by rounding, so we get our scaled plaintext.

Now, we scale down, so all coefficients are divided by the scale factor

We bring back the polynomial by bringing back the zeros in the result polynomial.

So we have our plaintext back.

There are three Kyber variants. Kyber512, Kyber768, Kyber1024 - corresponding to a

security level of AES128, AES192, AES256.

In Kyber is the degree of the polynomials (256 for all variants), is the size

of the vectors of polynomials, that is, how many polynomials are in the vectors.

 is the modulus for the number used in Kyber.

Compared to Pre-Quantum Crypto:

• Kyber is very fast, faster than Curve25519

• Kyber has larger key sizes than pre-quantum algorithms (RSA3072, Curve25519)

d = ms + (e ⋅ e0 + e1 − se2)

ms = 1337 ⋅ m = 1337 ⋅ x6 + 1337 ⋅ x + 1337

1337

m =
1337 ⋅ m = 1337 ⋅ x6 + 1337 ⋅ x + 1337

1337

m = $1 ⋅ x6 + 0 ⋅ x5 + 0 ⋅ x4 + 0 ⋅ x3 + ⋅x2 + 1 ⋅ x1 + 1 ⋅ x0 = x6 + x + 1$(plaintex

10000112

≈

n k = 2, 3, 4

q = 3329

